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Hyperbolic Functions & applications

Definitions & identities
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Figure 1: cosh & sinh plots. Note how their magnitudes approach each other for large x.
Why? What will be the nature of tanh(z) plot?

The defining equations are:

cosh(x) = exp(2) +Qexp(—:1:)7 (1)
sinh(z) = S2&) _;Xp(_x), 2)
tanh(z) = sinh(z) (3)

cosh(x)’



Hyperbolic Functions

over the interval —oco < x < 0.
Using these equations, prove the following identities:

cosh?(z) — sinh?(x) = 1,
cosh(2z) = 2 cosh?(z) — 1,
cosh(2x) = 2sinh?(z) + 1,
sinh(2x) = 2sinh(x) cosh(x),
d cosh(z)

P sinh(zx),
d sinh
%@) = cosh(z),

/Cosh(x) dx = sinh(z) + C,

/sinh(x) dx = cosh(z) + C.

The inverse functions are defined as:
x = cosh(y) x = sinh(y)
y =cosh™'(z), z > 1 y = sinh™ (z), —00 < 7 < 0

Note the different domains of the two inverse functions. See the graphs (Fig of the
hyperbolic functions for reasons.
Consider the first pair of equations above.

exp(y) = cosh(y) + sinh(y)

= o +4/cosh’(y) — 1
—r+Va2—1
In[exp(y)] = In (:c + \/m>
y=1In (91; + \/ﬁ)
cosh™*(z) = In (JJ + m) ,x>1 (4)
For the second pair, another useful identity results:

exp(y) = cosh(y) + sinh(y)

= 4/sinh®*(y) + 1+ =

=r+Va2+1
In[exp(y)] = In (x + m>

y=1In <:c + \/T—H)
sinh™(z) = In (m + \/m> , —00 < T < 00 (5)
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Note that the argument for the logarithm is always > 0, hence no modulus sign is required.
Prove that:

cosh™(z) = sinh ' (Va2 — 1), . > 1 (6)

sinh™ ()

cosh ' (Va2 + 1), —o0 < 2 < o0 (7)

Compare eqns 6 & 7 with the corresponding relations for the inverse trigonometric func-

tions sin' z & cos™! .

Evaluation of integrals

Evaluation of [ \/I‘jxﬁz For y = z/a, we have

/ dx _/ dy
Va?+a? Vyi+1

[ cosh(z)dz L
= /—cosh(z) , fory = sinh(2)

=2+ C =sinh '(y) +C

or, /\/% =sinh™'(z/a) + C =In <x+\/x2+a2> +C, (8)
2 +a

where eq.5 has been used (€' = C —Ina).
Following the preceding steps, prove that:

/% — = cosh™Y(z/a) +C =In <x+\/a:2—a2> + ' (9)

Prove that:
1
/\/1 +a?z?dr = 2—sinh_1(a:v) + g\/l +a%224+C
a
1
:2—1n<am+\/1+a2x2)+§\/1+a2x2+0 (10)
a

Hints: Make the substitutions y = v/1 4+ a22? & then z = cosh™'(y). This reduces the
integral to (1/2a) [(cosh(2z)+1)dz. After integration, use the various identites to simplify
& obtain the final expressions.
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The Hyperbola
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Figure 2: Polar plots for the two branches of a hyperbola. | = 1; e = 1.5. The origin is
the first focus S & the red line is the corresponding directrix.

The equation of any conic section in plane-polar coordinates is given by

l

=
1+ecoso

(11)
where ¢ = 0 is the position of the periapsis (defined later).

In plane geometry, a conic section is defined as the locus of points whose distances to
a fixed point (the focus) and a fixed line (the directriz) always has the same ratio (the
eccentricity e). If P1 be a point on the conic, then SP1 = e PIM1 (see Fig.. The
coordinates of P1 is (r,¢), ¢ = 0 being along SA. The length of a chord parallel to the
directrix & passing through the focus is called the latus rectum 21 (SL = [ in Fig. Then
SL = e LM, by definition. From the figure, LM = SP1cos¢+ P1M1 = rcos¢+ P1M]1.

Hence,

[
LM = - =rcos¢+ C, whichis Eq.11.
e e

The periapsis & apoapsis are the nearest & farthest points on the conic from the focus.
For e < 1, an ellipse, the periapsis lies between the focus & its directrix. The apoapsis
lies in the side of the focus opposite to the directrix.

The parabola & hyperbola have no apoapsis. However, the hyperbola, for which
e > 1, there is a second branch on the opposite side of the directrix. This branch
also has a periapsis, marked A in Fig[2] For any point P2 on this branch, we must have
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SP2 = e P2M2. Let the coordinates of P2 be (1, ¢'). From the figure, LM + P2M2 =
SP2cos¢ =1r'cos¢’. Hence,

/

[
LM+ pPoM2="4" =1 cos ¢’
e e

On rearrangement, the equation for the second branch is

l
S — 12
" ecos@ —1’ (12)

where (', ¢') are the polar coordinates of points on the second branch with the first focus
as the origin. The two periapses distances are therefore,
l l

e+1 ¢2:€_1

(13)

r =

The major axis for a hyperbola = 2a is defined as the distance between the two periapses
(AP in FigP). Or,
o — T l
a=—F—=5 (14)

A second symmetry axis of the hyperbola, called the minor axis, also exists which is
perpendicular to the major axis & lies midway between A and P in Fig2] or midway
between the second & first foci (see Figl3). Now, consider any point P on a single
branch of a hyperbola. W.r.t. its first focus S, the equation of the branch is given by
Eq.11, with (r, ¢) being the coordinates of P with S as origin & ¢ = 0 is along SD, ¢
increases in the anti-clockwise direction. If the second focus S’ is taken as the origin, the
coordinates of P are (1'¢’), with ¢/ = 0 along S"D’, ¢ increases in the clockwise direction
. The equation of this branch is therefore given by Eq.12.

From Figly] 59" = r1 +ry = 2le/(e? — 1).

Also, S8 = SQ+ QS = SPcosp+ S'Pcos¢’ =rcosp+1r'cosg’. Using Eqns. 11 &
12, we have

2le l—r “l+7 20 ¢ —7r
_|_

2—-1 e e e e
2le? 21

9= -
e2 —1 e2 —1

or, ¥’ —r = 2a, (seeEq.14) (15)

Eq.15 is satisfied by any point on a particular branch of a hyperbola, r being its distance
from the first focus & 1/, the distance from the second focus.

Hyperbola in Cartesian coordinates

A hyperbola, with its focus on the X —axis is described by the equation

L
a2 b2

where a & b are its semi-major & semi-minor axis distances respectively. The slope of the
curve is dy/dx = (x/y)(b*/a?). In the asymptotic region, Eq.16 reduces to

, (16)
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Figure 3: A point P on a single branch has coordinates (r, ¢) & (r'¢’) w.r.t. the two foci
S & S’ as origins respectively. [ = 1; e = 1.5. For each focus, there is a corresponding
directrix.

Hence, the slope of the asymptote (which is equal to the slope of the curve in the asymp-
totic region) is given by )

dy ab b

dﬂz:_j:ba2 _ia (17)
Therefore, the height of a triange with a as its base & the asymptote of slope b/a as
hypotenuse, is simply b (see Fig{4))

Relationship of a, b & e:

The eccentricity of the hyperbola can be obtained by comparing the Cartesian & the
polar form. The branch located at x > a is given in the polar form by Eq.12. The polar
angle of the asymptote is obtained by taking the limit r — oo or ¢’ — cos™'(1/e).

Hence tan™!(b/a) = cos™ (a/va? + b%) = cos™*(1/e). Therefore we have

b2
e=\/1+— b=ave?—1 (18)
a

The foci are located at a distance £(r; +a) = %ae from the origin (see Figl4 & Eq.14).
Rectangular Hyperbola

A hyperbola, with its major & minor axes of equal length, is called a rectangular hyper-
bola. The asymptotes, therefore, make an angle of tan~!(1) = 7/4 with the symmetry
axis & are hence mutually perpendicular. When the asymptotes are used as coordinate
axes, the equation of the hyperbola takes a simple form.

6 Dr. Siddhartha Sinha



Hyperbolic Functions

3 T T [ T T
aZ-y2/b2=1

asym ptdtes

Figure 4: Hyperbola in Cartesian coordinates. a = 2; b = 1. For this choice, e ~ 1.118

Consider the rectangular hyperbola y? — 22 = @?, with its foci lying along the Y axis.
To use the asymptotes as axes, an anti-clockwise rotation of angle 7 /4 about the Z axis is
necessary. Let us call this system the X'Y"” system. The coordinates of any point (z,y)
transforms to (z/, ), by the transformation relations:
x = a' cos — 1 sinf
y =’ sinf + 1 cos b,
2 2

with @ = /4. Substituting in the relation y*> — z? = a?, we get the equation of a
reactangular hyperbola, with asymptotes as axes, as

2y =—. (19)

Note that the eccentricity of such a hyperbola is, by Eq.18, v/2.
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